
Reactive Multi-Stage Feature Fusion for Multimodal Dialogue Modeling

Yi-Ting Yeh, Tzu-Chuan Lin, Hsiao-Hua Cheng, Yi-Hsuan Deng, Shang-Yu Su, Yun-Nung Chen
National Taiwan University, Taiwan

{r07922064,b04705003,b03902024,b04902013,f05921117}@csie.ntu.edu.tw y.v.chen@ieee.org

Abstract
Visual question answering and visual dialogue tasks have
been increasingly studied in the multimodal field towards
more practical real-world scenarios. A more challenging task,
audio visual scene-aware dialogue (AVSD), is proposed to
further advance the technologies that connect audio, vision,
and language, which introduces temporal video information
and dialogue interactions between a questioner and an an-
swerer. This paper proposes an intuitive mechanism that fuses
features and attention in multiple stages in order to well in-
tegrate multimodal features, and the results demonstrate its
capability in the experiments. Also, we apply several state-
of-the-art models in other tasks to the AVSD task, and further
analyze their generalization across different tasks.

Introduction
Nowadays, many real-world problems require to integrate
information from multiple sources. Sometimes such prob-
lems involve distinct modalities, such as vision, language
and audio. Therefore, many AI researchers are trying to
build models that can deal with tasks using different modal-
ities, and multimodal applications have become an increas-
ing popular research topic. For example, visual question an-
swering (VQA) (Antol et al. 2015) is the task that aims at
testing whether an AI model can successfully summarize an
image, text description of that image and then generate a
correct response. The visual dialog task focuses on examin-
ing whether a system can interact with human via conversa-
tions (Das et al. 2017), where in a conversation, the system is
expected to answer questions correctly given an input image.
However, it is difficult to well converse with users when only
accessing a single image without audio and dynamic scenes.

Motivated by the need for scene-aware dialogue systems,
audio visual scene-aware dialogue (AVSD) is recently pro-
posed by Alamri et al., providing more dynamic scenes with
video modal rather than static images in VQA or Visual
dialogue tasks. With richer information, machines can be
trained to carry on a conversation with users about objects
and events around them. To tackle this problem, this paper
focuses on 1) better encoding multimodal features and 2)
better decoding the responses with consideration of the en-
coded information. We propose an reactive encoder that is
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capable of fusing multimodal features and paying attention
correctly, and a decoder that investigates different decoding
mechanisms for better generating the dialogue responses. In
this paper, our main contributions are 3-fold:
• This paper proposes a simple but effective way to fuse

different modalities by the 1 × 1 convolution followed by
a weighted sum operation.

• The proposed multi-stage fusion mechanism can encour-
age the model to thoroughly understand the question.

• This paper first attempts to generalize top-down attention
proposed by Anderson et al. and investigates different at-
tentional decoding methods in a principled way.

Task Description

The task is audio visual scene-aware dialogue (AVSD),
which tests the capability of dialogue responses given au-
dio, visual and dialogue contexts. The process of data col-
lection is illustrated in the left part of Figure 1, where the
collected dataset contains 11,156 visual dialogues. Each di-
alogue contains a video and dialogue texts, where there are
pre-extracted feature modalities using VGGish (Hershey et
al. 2017) (vggish) and I3D models (Carreira and Zisserman
2017) (i3d) for the video, and the dialogue texts contain a
video caption, a summary written by the questioner after 10
rounds Q/A and dialogue history, denoted as caption, sum-
mary and dialogue respectively. Note that our model in the
experiments only considers answer parts as our dialogue
features. Our goal is to play the role of an answerer, who
can reply the reasonable answer to the questioner illustrated
in the right part of Figure 1.

Proposed Approach

Our system can be viewed as an encoder-decoder model,
which is commonly used in conversation modeling
(Sutskever, Vinyals, and Le 2014). We first explain the fea-
ture selection procedure, describe the basic fusion model,
and then detail the novel design for the proposed model. In
the encoder, we apply basic fusion, multi-stage fusion, and
1x1 convolution fusion methods. In the decoder, we apply
an original decoder, an attention decoder, and a top-down
attention LSTM decoder. The detail is described below.



Is the person already in the room, or do they enter it ?
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a laundry room.
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Figure 1: The illustration of the collected data and the audio visual scene-aware dialogue (AVSD) task.

Type Sentence
Caption Man walks over to laptop and throws towel

over his shoulder. He sits down and wipes and
scratches his face with his hands and begins
staring at the laptop.

Summary A man walks into a room and sits down while
looking at a laptop on the floor.

Table 1: Misleading summary example.

Feature Selection
Considering that multiple modalities are involved in this
task, it is important to choose proper and useful features for
it. However, some features are too noisy to model and may
result in ambiguity. In our proposed model, we decide to ig-
nore i3d and summary for our feature set.

There are several reasons to drop i3d. The main reason is
that i3d has too much information and thus contains many
noises, which may hurt the stability of our model. We as-
sume that the useful information contained in i3d can be
obtained by combining vggish and texts. Because the au-
dio tends to attract attention of people and be the key in
the video, vggish provides more compact information and
texts supply detailed description. In our experiments, we
also found that removing i3d does not lead to a huge degra-
dation of performance, implying that in fact we can answer
most questions without this feature set in our model setup.

The reason of removing summary in our feature set is
the concern about misleading and impracticality. We observe
that caption usually contains more concise description and
more rich information than summary, so our model only
concentrates on caption to better answer questions. Another
consideration is about how summary is generated. It is also
more reasonable and practical to remove summary from our
feature set, considering that the summary is generated by the
questioner who does not see the video. For example, Table 1
shows a misleading summary example that contains incor-
rect information.

Feature Encoder
After removing noisy features, our model utilizes several se-
quential features in different forms for the task. Let xi =
{xi

1, . . .x
i
Ti
} represent the i-th feature, which can con-

tain both video features and text word embeddings. For

text-based features, Glove is applied to obtain word em-
beddings. Then for each temporal sequence of features, an
uni-directional GRU encoder is used to encode all sequen-
tial features into a common space Rd, producing zi =
{zi

1, . . . z
i
Ti
}, where zi

t ∈ Rd and can be the representation
of the whole video or the dialogue history. The illustration
can be found in Figure 1.

Basic Fusion Model
In our basic fusion model, we use the last hidden states
{z1

T1
, . . . ,zn

Tn
} for each modality as the encoded represen-

tation, and fuse different modalities into a global multimodal
representation, z, using a weighted sum operation. Ti indi-
cates the number of hidden states of the i-th feature. The
fused representation is computed by

z =

∑n
i=1 wiz

i
Ti∑n

i=1 wi
, (1)

where wi is a trainable scalar weight and n is the number of
feature types.

We initialize the first hidden state h0 = z in the decoder
and use a GRU to generate the answer. The decoding pro-
cedure follows ht+1 = GRU(yt, ht), where ht is the t-th
hidden state in the decoder and yt is the output in the t-th
step.

Pr(yt | y1:t−1) = softmax(Wht + b), (2)

where W ∈ R|Σ|×dh and b ∈ R|Σ| are learned weights. Σ
and dh are the vocabulary and the dimension of the hidden
state respectively.

Multi-Stage Fusion
In addition to the above basic fusion model, here we intro-
duce a novel feature fusion mechanism using multi-stage
attention. The attention enables the model to focus on a
targeted area within a context that is relevant to answer
the question (Antol et al. 2015; Xiong, Merity, and Socher
2016). With the attention mechanism, we can enhance or
modify vectors set with the information from other vectors;
it is called the fusion process where information of some
vectors is fused into other vectors (Huang et al. 2018).

An general attention function can be described as com-
puting the weighted sum of values, where the weight is
given by the attention score between a query and a key via a
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Figure 2: The illustraion of the proposed model architecture.

score function. For simplicity, our model uses the same vec-
tor for the value and the key. Here we choose the recently
popular multi-head attention as our attention score function
(Vaswani et al. 2017):

MultiHead(Q,V ) = [head1; . . . ; headn]WO,

headi = Att(QWQ
i , V W

K
i , V WV

i ),

Att(Q,V,K) = softmax(
QV T

√
dk

)K,

(3)

where WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , WV
i ∈ Rd×dk and

WO ∈ Rndk×d are parameters. [A;B] means the concate-
nation of two vectors A and B. n is the number of heads
and d is the dimension. dk = d/n. Note that we add a resid-
ual connection after the attention to help model converge
faster (He et al. 2016).

Our multi-stage fusion starts from fusing encoded ques-
tion (zQ) into encoded caption (zC) and dialogue (zD), and
we consider the concatenation of caption and dialogue to be
the context. We apply the multi-head attention as (3) to gen-
erate fusion vectors and then feed them into a bidirectional
GRU reader to obtain the fused representation:

Ufusion = MultiHead([zC ; zD], zQ)

zfusion = BiGRU(Ufusion)
(4)

While the context is necessary to infer the answer, an is-
sue in our current fusion representation is lack of full un-
derstanding about the context. To address this problem, we
compute the attention Uself using self-attention, which usu-
ally improves performance a lot in machine comprehension
and question answering (Wang et al. 2017; Vaswani et al.
2017). We also feed Uself into a bidirectional GRU and ob-
tain zself , where zself can be viewed as vectors that fuse all

textual information together. Formally written as:

Uself = MultiHead(zfusion, zfusion),

zself = BiGRU(Uself ).
(5)

Then we have tried many different ways to leverage zfusion
and zself , and find the most efficient way is to use the
last hidden state of them and add them into computation of
the weighted sum in (1). Therefore, the multi-stage fusion
mechanism intuitively offers richer information to enhance
the first hidden state passed to the decoder.

1x1 Convolution Fusion
Instead of a simple weighted sum in (1), we find that it is
beneficial to insert 1x1 convolution (Szegedy et al. 2015)
before the weighted sum to help each feature channel inter-
act with each other. The weighted sum operation can also be
considered as an single channel 1x1 convolution with output
normalization.

To model the multimodal features using n channels,
we utilize the last hidden state for each feature type,
{z1

T1
, . . . ,zn

Tn
}. We run nc channels 1x1 convolution on

the inputs and obtain {ẑ1, . . . , ẑnc}. Then we compute the
weighted sum as (1):

z =

∑nc

i wiẑ
i∑nc

i wi
, (6)

where wi is a trainable scalar weight.

Attention Decoder
In the decoding phase, attention is also commonly used to
help model focus on important information in the encoder-
decoder model (Luong, Pham, and Manning 2015). We



choose a commonly used multiplicative attention (Britz et
al. 2017) and the computation follows:

ai,t = vTi U
TV ht,

αt = softmax(at),
(7)

where U ∈ Rk×dx , V ∈ Rk×dy are trainable weights and
vi ∈ Rdx×1, ht ∈ Rdy×1 are inputs. k is the attention di-
mension. Note that ai,t = vTi U

TV ht is also called low-rank
bilinear method (Pirsiavash, Ramanan, and Fowlkes 2009;
Kim et al. 2016).

In the decoding step t, the attention of a query ht and
values v = {v1, . . .vr} is computed as:

Ct =

r∑
i

αi,tvi. (8)

We then concatenate the context vector Ct with the next step
input yt as the attention-enhanced input and pass it through
GRU, formally written as:

ht+1 = GRU([yt;Ct], ht). (9)

Here we choose a simple concatenation of all encoded
features to form v: {z1

1 , . . . ,z
1
T1
, z2

1 , . . . ,z
n
Tn
}. We will dis-

cuss how v influences performance in the experiments.

Top-Down Attention LSTM
We also try an alternative attention decoder called top-down
attention LSTM (Anderson et al. 2018), which has been
proved useful in visual question answering. The original de-
sign makes this model selectively attend to spatial image fea-
tures, but we generalize it and feed arbitrary encoded values
set v = {v1, . . . ,vr} = {z1

1 , . . . ,z
1
T1
, z2

1 , . . . ,z
n
Tn
} into

this model. We consider this model as an enhanced attention
decoder, where an additional attention LSTM is used to fur-
ther track what has been attended and expect it can provide
more useful information for the attention module.

Here the top-down attention LSTM has two LSTM layers,
which are named attention LSTM and language LSTM. We
consider the first LSTM layer as an attention model and the
second LSTM layer as a language model. The main purpose
of separating two LSTM cells is to modularize the learning
process into two parts: capturing the importance of multi-
modal features (attention LSTM) and language generation
(language LSTM).

The input vector to the attention LSTM at time step t
consists of the previous output hidden states of the lan-
guage LSTM concatenated with the mean pooled features
v̄ = 1

r

∑r
i=1 vi and a word embedding of the previ-

ously generated word. x1
t = [h2

t−1; v̄; embed(yt−1)], where
embed(yt−1) is the word embedding of yt−1. Given the out-
put h1

t of the attention LSTM, we compute the attention
score as follows:

bi,t = wT
a tanh(Wvavi +Whah

1
t ),

βt = softmax(bt).
(10)

Then we calculate the context vector of attended features as

Ct =

r∑
i

βi,tvi. (11)

The input to the language LSTM consists of the context
vector of attended vectors concatenated with the output of
the attention LSTM, x2

t = [h1
t ;Ct]. We pass x2

t into the
language LSTM to obain h2

t and compute the output word
distribution as:

Pr(yt | y1:t−1) = softmax(Wh2
t + b), (12)

which is exactly same as the basic decoding setup in (2).

Training and Testing
The full model is trained in an end-to-end manner to opti-
mize the dialogue generation results in (2). During testing,
beam search is applied to generate the fluent answering sen-
tences given the contexts.

Experiments
To evaluate whether the proposed model is capable of mod-
eling dialogues with multimodal scenarios, a set of experi-
ments is conducted.

Experimental Setup
We run our experiments using the official AVSD dataset
(Alamri et al. 2018a), which consists of 7659, 1787, 1710
dialogues for train, dev, and test sets respectively. In the
dataset, almost all dialogues contain 10 question/answer
pairs. We use the evaluation script nlg-eval 1 to compute
objective evaluation scores for the model, where the punc-
tuations, ‘,’ and ‘.’, are not taken into account. In the exper-
iments, the compared baselines include a naı̈ve copy base-
line and the released baseline (Alamri et al. 2018b), where
the naı̈ve baseline simply copies the questions as its answer
and serves as a lower bound of this task. Note that because
we found there are many word overlaps between the ques-
tion and the answer, the copy baseline in fact has very strong
performance under objective evaluation metrics.

Fine-Grained Response Revision
In the answering sentence to the yes/no question, adding
“yes” or “no” at the beginning may affect the performance.
Therefore, we train a classifier to predict whether “yes” or
“no” tokens should be inserted. This classifier consists of an
RNN encoder followed by a linear projection output layer.
Note that we first filter out yes/no questions by rules, since
yes/no questions should not be answered with this token.

Results
Table 2 shows the experimental results, where our models
only take vggish, caption, and dialog into account, while
the released baseline additionally use i3d as their input fea-
tures. While the basic model is the simple architecture with-
out any mechanism, it shows surprising performance spe-
cific in CIDEr (from 0.69 to 0.99) (Vedantam, Zitnick, and
Parikh 2015). Because CIDEr measures the ability of cap-
turing correct objects in the image and places less atten-
tion on words which frequently appear in answers such as

1https://github.com/Maluuba/nlg-eval



Model Encoder Model Decoder B-1 B-2 B-3 B-4 MET. R-L CIDEr

Baseline Naı̈ve Copy 0.231 0.124 0.077 0.049 0.111 0.235 0.637
Released (Alamri et al. 2018b) 0.270 0.172 0.118 0.085 0.115 0.292 0.790

Basic Fusion Simple Fusion Simple 0.232 0.157 0.112 0.084 0.120 0.305 0.994
Multi-Stage Simple 0.231 0.157 0.113 0.086 0.119 0.308 1.009
1x1 Convolution Simple 0.239 0.162 0.117 0.088 0.122 0.310 1.013

Simple Fusion Attention 0.245 0.162 0.115 0.086 0.119 0.308 0.977
Simple Fusion Top-Down Attention LSTM 0.234 0.158 0.113 0.085 0.119 0.309 0.986

Multi-Stage Multi-Stage Attention 0.238 0.161 0.116 0.088 0.123 0.311 1.028
Multi-Stage + 1x1 Conv Attention 0.238 0.163 0.118 0.090 0.122 0.315 1.059
Multi-Stage + 1x1 Conv Attention (w/o vggish) 0.243 0.165 0.119 0.091 0.124 0.313 1.046
Multi-Stage + 1x1 Conv Attention (w/ i3d) 0.234 0.157 0.112 0.084 0.117 0.303 0.958

Submitted Basic Fusion Model (Prototype) 0.237 0.161 0.116 0.088 0.121 0.310 1.015
+ Fine-Grained Response Revision 0.238 0.161 0.116 0.087 0.122 0.315 1.024
Fusion Text Model 0.214 0.140 0.098 0.073 0.110 0.286 0.859
+ Fine-Grained Response Revision 0.215 0.141 0.099 0.073 0.111 0.291 0.874

Table 2: The results of baselines and our proposed models, where our models do not use i3d and summary.

stopwords, the result tells that the basic model already cap-
tures important information and objects in the video without
the complicated design of attention. In the proposed model,
we analyze the results for different encoding and decoding
mechanisms.

Encoding We examine the effectiveness of the proposed
two fusion methods, multi-stage fusion and 1x1 convolu-
tion fusion. The proposed multi-stage fusion provides model
deeper understanding of input features and then further
boosts the performance of CIDEr. The 1x1 convolution fu-
sion also enable interactions between different modalities
and improves the performance.

Decoding Furthermore, two decoding mechanisms, atten-
tion decoder and top-down attention LSTM, are investi-
gated. Two variants of decoders have different advantages.
The attention decoder mainly improves BLEU scores (Pap-
ineni et al. 2002), while the top-down attention boosts the
performance for the ROUGE score (Lin 2004). It may be
because the attention decoder enhances the ability of our
model to capture the specific word usage in dialogues. On
the other hand, the top-down attention LSTM adds the at-
tention LSTM to help track what is attended in previous de-
coding, and thus improves the ROUGE-L where the recall
of generated words is relatively important. Hence, the at-
tention decoder is applied as our decoder in the following
experiments due to its strong ability of learning how to use
particular word in certain context and think these modules
will have complementary effects.

Proposed Fusion Model Our full fusion model is com-
posed of multi-stage fusion, 1x1 convolution fusion, and
the attention decoder, and further improvement is investi-
gated and analyzed in the experiments shown in Table 2.
Compared to the released baseline, we can find that even
the proposed basic model can outperform it by a large
margin in CIDEr, improve METEOR and ROUGE-L, and

Method B-1 B-2 B-3 B-4 MET. R-L CIDEr

Prod .221 .146 .103 .076 .109 .288 .823
Sum .232 .156 .111 .083 .116 .305 .950
Concat .237 .160 .116 .087 .120 .306 .987
Weight .232 .157 .112 .084 .120 .305 .994

Table 3: Results of different fusion methods.

achieve comparable results in BLEU-4. Note that BLEU-
1 and BLEU-2 are not good metrics to evaluate quality of
generated sentences in dialogues, because they only measure
unigram and bigram precision. The copy baseline shows that
we can reach high BLEU-1 and BLEU-2 by simply copying
the questions, implying that these are not good indicators.
The comparable BLEU-4 shows that our basic model in fact
have similar ability to capture the sentence structure com-
pared to the released baseline. Furthermore, our proposed
full fusion model can significantly outperforms the released
baseline for almost all metrics.

Here we also conduct experiments on two variants of our
full fusion model. The first one does not use vggish features,
so it is a pure text model, and the second one additionally
uses i3d features, which can be fairly compared with the
released baseline. Table 2 shows that the pure text model
also achieves better BLEU scores compared to the model
that uses additional video features, implying that the lan-
guage part of test data provides rich enough information for
the model to answer most questions. On the other hand, us-
ing i3d features results in performance drop, confirming our
concern about noisy i3d features and demonstrating the need
of the proposed feature selection.

Analyzing Fusion Operations
In Table 3, we test different representation fusion methods
to fuse features {z1

T1
, . . . ,zn

Tn
} into v, while we choose

weighted sum in the simple model (Table 2). 3 different fu-
sion methods are listed below:
• Product: z =

∏n
i z

i
Ti



Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr Human

Baseline (i3d) (Alamri et al. 2018b) .621 .48 .379 .305 .217 .481 .733 —
Baseline (i3d + vggish) (Alamri et al. 2018b) .626 .485 .383 .309 .215 .487 .746 2.848

Basic Fusion Model (Official) .636 .510 .417 .345 .224 .505 .877 —
Basic Fusion Model (Prototype) .640 .513 .416 .342 .223 .504 .837 3.188
+ Fine-Grained Response Revision .641 .513 .416 .342 .223 .504 .836 —
Fusion Text Model .592 .468 .375 .304 .206 .475 .729 2.928
+ Fine-Grained Response Revision .595 .477 .376 .304 .207 .477 .731 —

Table 4: The submitted results in the official test set.

Features B-1 B-2 B-3 B-4 MET. R-L CIDEr

dialogue .228 .153 .110 .083 .116 .296 0.934
+ caption .229 .154 .111 .084 .119 .305 0.976

+ vggish .232 .157 .112 .084 .120 .305 0.994
+ i3d .239 .161 .116 .087 .121 .309 1.002

Table 5: Results of the feature ablation tests. Model archi-
tectures are simple model using different input feature set.

Features B-1 B-2 B-3 B-4 MET. R-L CIDEr

vggish .233 .159 .115 .087 .121 .309 1.019
caption .232 .158 .114 .087 .120 .307 1.007
dialogue .234 .159 .115 .087 .120 .309 1.023
all .245 .162 .115 .086 .119 .308 0.977

Table 6: Results of the attention ablation tests. Decoder is
attention decoder which attends on different feature set of v.

• Sum: z =
∑n

i z
i
Ti

• Concat: z = W cat[z1
T1

; . . . ; zn
Tn

], W cat ∈ Rdh×dn

As we expect, the weighted sum outperforms other meth-
ods except concat. While weighted sum is better in CIDEr,
concat outperforms it in BLEU scores. Note that the number
of parameters in the weighted sum is significantly smaller
than the number in concat, because it only needs to learn n
scalars and concat uses dhdn parameters. Considering the
model size and extensibility, the weighted sum is considered
as a better choice.

Ablation Test
In order to investigate the usefulness of features and atten-
tion, two sets of experiments are conducted for analysis.

Feature In Table 5, we examine the effectiveness of each
feature set by fixing the model architecture to the basic
model. The results demonstrate that all feature sets contains
semantically meaningful information, and the performance
of the basic model gradually improves when we add more
features. When using a simple model architecture, using i3d
can improve the performance, which is different from the re-
sult shown in Table 2. The reason is probably that i3d is too
noise to learn, and thus we observe these different results
when using i3d features.

Attention We also test our attention decoder on different
attention values v. Different from our expectation, results

in Table 6 show that different attention values lead to little
difference of performance. In sum, dialogue gives the best
CIDEr score, and using all input features together leads to
the best average BLEU score.

Official Results
We submit the following five predictions:
• Basic fusion model (official): a basic simple fusion model

trained on official data
• Basic fusion model (prototype): a basic simple fusion

model trained on prototype data (w/o and w/ fine-grained
response revision)

• Fusion text model: a fusion model with multi-stage fusion
and attention decoder that only take texts into considera-
tion (w/o and w/ fine-grained response revision)

Note that the submitted models here used different experi-
ment settings from the one proposed in this paper and the
models were not well trained. Here feature selection is not
applied, so the basic fusion model considers the i3d features.
The results are shown in Table 4, and the performance is
evaluated with consideration of multiple correct responses.
Because the numbers in Table 4 are not comparable with
ones in Table 2, we also show the submitted results in the last
two rows of Table 2 for fair comparison. Our simple model
outperforms the released baseline in all metrics, especially
in CIDEr (by 12%) and human evaluation (by 11%). The
proposed fine-grained response revision brings the small im-
provement, although the model which is not well trained.

Our proposed basic fusion architecture has less parame-
ters but achieves better performance than the released base-
line, which uses a complicated attention scheme. The results
show that the simple 1×1 convolution fusion may have po-
tential of disentangling each dimension on z shown in Figure
2 and then resulting in more semantically meaningful repre-
sentations for multiple modalities.

Conclusion
This paper proposes an intuitive and effective visual dia-
logue model based on an encoder-decoder design. We de-
velop a set of modules that are capable of fusing multimodal
features with and performing context-aware decoding. In the
experiments of the audio visual scene-aware dialogue task,
we validate the effectiveness of each module and analyze
whether it is necessary to use all features to correctly an-
swer questions. The attempt in this paper bridges different
modalities and encourages further model exploration for ad-
vancing the important research area about multimodality.
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Video Frame Type Sentences

Caption a person in the entryway is working on something on their phone. they start throwing
some clothes at another person who is watching them oddly.

Question are they laughing in the video?

Ground Truth they are not laughing out loud but are smiling and appear maybe to be flirting a bit.
Released Baseline no, they are both talking to each other at the end of the video.
Basic Fusion Model no they are not talking.
Multi-Stage Fusion Model no, they are not laughing.

Caption one person walks into the room, pours a glass of something, then grasps a phone and
leaves.

Question does he appear to be calm in the video?

Ground Truth yes he appears to very calm in the video.
Released Baseline no he does not show any emotion.
Basic Fusion Model he seems to be in a good mood.
Multi-Stage Fusion Model yes he seems to be calm.

Table 7: The testing examples of the answers from our models.

Appendix
Hyperparameter Setting
For all text features, we split them by space and use pre-
trained word vectors, Glove (Pennington, Socher, and Man-
ning 2014), to obtain fixed word embedding for each word.
The hidden state dimension of all uni-direction GRU is 256,
and one of bidirectional GRU is set to 128 for dimension
control. We use the Adam optimizer (Kingma and Ba 2014)
with β1 = 0.9, β2 = 0.999 and ε = 10−8. The initial
learning rate is 5 × 10−4 and we multiply it by 0.1 every
6,000 update iterations. We add 10−4 L2 penalty and apply
dropout (Srivastava et al. 2014) to the input word embed-
dings and video features, where the dropout rate is set to 0.5.
The batch size varies from 8 to 16 according to our avail-
able computing resources as regularization. During training,
the early stop mechanism is applied. During testing, we use
beam search and set the beam size equal to 5 to generate our
final answers.

Qualitative Analysis
We show some examples in Table 7 to qualitatively evaluate
our model. In the first example, a woman is using her phone,
while a man is staring at her in the video. One question in
the dialogue about this video is “Are they laughing in the
video?”, which should be easy for the model with incorpora-
tion of audio features (vggish). However, the released base-
line says “no, they are both talking to each other at the end
of the video”, which is totally wrong because they only ap-
pear to be happy and a little flirting but do not talk or laugh.
On the other hand, our model is able to correctly capture the
audio features and answer they don’t talk and laugh in the
video. An interesting difference of the basic fusion model
and the multi-stage fusion model is the word they choose.
The basic fusion model uses “talking” while the multi-stage
model picks the word “laughing”, which is more proper for
this question. This example demonstrates that our proposed
model can help system understand and catch what happens
in the video and what the questioner asks.

In the second example, a person walks into the room,
drink a water, picks a phone and leaves. It is difficult to tell
whether the man is calm from few video frames, because
face expression of the man is not clear in the video. How-
ever, our model can answer correctly using the fact that this
man does not make large sound, which is the evidence that
this man moves slowly, and calmly. The previous rounds of
the dialogue mention that this man pour water to the coup
and drink from it, which is another evidence that this man is
not hurry to pick his phone and leave. To answer this hard
question correctly, it is necessary to fuse evidences from
both audio and texts, and our model is capable of gener-
ating the correct answer by fusing the multimodal features
properly.


